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GRAPHO-ANALYTICAL CALCULATION OF PARTICLE SIZE DISTRIBUTION 

CHARACTERISTICS OF CONCRETE AGGREGATES 

 

Ph.D. Tibor KAUSAY – Ph.D. Tamás SIMON 

 

The grading of concrete aggregates (sands, sandy gravels, crushed stones, stone dusts etc.) 

numerically the particle size distribution is characterised namely by the mean value, the 

standard deviation, the variation coefficient, the average particle size, the fineness modulus 

and the specific surface area (by volume). The article introduces a united system for the 

determination of particle size distribution characteristics. The developed grapho-analitic 

calculation method unites the visualization of graphic methods with the consistence of the 

analytic methods. The application of the method means the determination of the particle size 

distribution  characteristics by solving simple equations which represent the areas above or 

under the grading curves which are presented in the appropriate coordinate system. The 

usability of the equations is greatly helped by computerisation. The figures offer better 

understanding of the formulas. 

 

Keywords: aggregate, sandy gravel, crushed stone, grading, fineness modulus, specific 

surface 

 

1. INTRODUCTION 

During research, development and high standard design of the aggregates or fillers of 

concretes, mortars and asphalts, the grading of the sands, sandy gravels, crushed stones and 

stone dusts can be numerically specified by the mean value, the standard deviation, the 

variation coefficient, the average particle size, the logarithmic fineness modulus and the 

specific surface by volume (Kausay, 1975). The determination of them is always based on the 

result of a sieve or a sedimentation test. The calculation however can be done in two ways 

that is graphically or analytically, depending on that the area under or above the curve in the 

coordinate system - proportional to the grading properties - is determined or we describe the 

values giving the grading properties. The area determination is done basically by 

measurement while the values are evaluated solely by calculations.  

Both methods have differential and also differentia variety.  

The developed method carries the signs of grapho-analytical differentia calculus. The 

method is grapho-analytical, because by area calculation we carry out moment determination, 
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and differentia calculus, and because for the determination of the grading properties we use 

directly the results of the sieve or the sedimentation test.  

 

2. THE PRINCIPLE OF THE CALCULATIONS 

 

As a principle of the calculations we use the common property of the grading, that the value 

of each can be expressed - depending on their characteristics - using a coordinate system 

which has a suitably transformed x axis by the area above or under the grading curve. For this 

the scale on the x axis must be chosen in such a manner that in the coordinate system the 

areas will be proportional to the grading properties, what can be achieved by transforming the 

originally linear x axis suitably. The linearly scaled x axis is the carrier of the particle size, 

while the transformed axis carries the descendant of the particle sizes.  

At first let us solve the calculation of the area in general because the determination of 

the grading properties can be derived from the solution of the general form of the area under 

the grading curve. 

In the present paper under the pδ  density function and its derivatives must always be 

understood a probability density function which is expressing mass proportion, while under 

the corresponding Pδ  distribution function and its derivatives always the relative mass 

distribution function should be understood even if the scaling of the y axis is in mass 

percentages. 

According to fig. 1. and 2. let us indicate the value of the particle size distribution by 

P, the boundaries of the subsets by δ, which in case of linearly scaled x axis means d, in case 

of quadratic scaling d2, in case of logarithmically scaled x axis lgd, while in case of reciprocal 

x axis scaling would mean d-1. The unit of d is mm. Let the indexes refer to the subset 

boundaries, to the first the no. 1 and n to the last which are the particle bulk’s smallest and 

biggest particle size.  

To derive the general form of the relation we should take the grading curve as 

consisting of straight lines and calculate the Tδ area under the Pδ grading curve: 
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Fig. 1 The Tδ area under the Pδ grading curve Fig. 2 Division of Tδ area to sub areas 

 
Following we look for the connection between the corresponding areas under the 

curve and the different grading characteristics.  

 

3. EXPECTED VALUE OR LINEAR FINENESS MODULUS 

 

The expected value or in other words the linear modulus of fineness of the d particle size is 

equivalent to the area above the grading curve mlin, which is plotted in a coordinate system 

having a linearly scaled x axis in the interval of d=0 and dn (formula (2) and Fig. 3 and 5.). 
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The Td expression necessary to express equation (2) can be obtained from equation (1) 

by inserting δ=d.  

The meaning of equation (2) using the signed areas on Fig. 3., 4. and 5 is:  

mlin (=) T4. Figure – T5. Figure 
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Fig. 3 The area mlin above Pd grading curve 

  
  
Fig. 4 The area dn under the line P =1 Fig. 5 The area Td under Pd grading curve 

 

As an explanation of equation (2) we must indicate that the kth moment νk of the area 

under the pd density function to the x axis is: 
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and the (k-1)th moment Ψk-1 of the area above Pd distribution function to the x axis (if k is not 

a negative number): 
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From the definition it is derived that ν0 is nothing else then the area under the density 

function pd and its value is ν0=1 (Fig. 6). 

 

Fig. 6 The ν0=1 area under the density function pd  

 

Further, if k≠0, and if k=1 then: 
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that is the latter is also the definition of the linear modulus of fineness.  

 

4. THE SQURE OF THE STANDARD DEVIATION 

 

Simplifying we can say that the pd density function and the corresponding Pd distribution 

function can be characterized by their expected value and square of the standard deviation. 

We have seen that the expected value is equal to the moment ν1 of the area under the pd 

density function to the x axis. 

The square of the standard deviation is the secondary central moment µ2 of the area under 

the density function pd to the vertical line of the expected value. It can be proved that the 

square of the standard deviation i.e. the µ2 central moment is equal to the difference of the 

squares of the ν2 second order moment and the ν1 primary moment. This is nothing else, but 

the difference of the squares of the double of Ψ1 primary moment (to the x axis) and of the 

expected value of the area above the grading curve expressed in a coordinate system having a 

linear x axis: 
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where in our case using k=2, µk in general is the kth order central moment of the area unther 

the pd density function to the vertical line of the expected value: 
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If the P distribution function is presented in a coordinate system which has not a linearly 

but a quadratically scaled x axis then into the place of the double Ψ1 primary moment a zero 

order moment will come into force. That is the square of the standard deviation is equal to the 

difference of the area (dn
2-Td2) above the grading curve expressed in a coordinate system 

having a quadratically scaled x axis in the interval of d=0 and dn
2 and the square of the 

expected value:  
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The content of equation (3) expressed by areas can be seen on Fig. 7., 8. and 9. 
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σ2 (=) T7. Fig - mlin
2 = T8. Fig - T9. Fig - mlin

2 

 

 
Fig. 7 The area σ2 + mlin

2 above the Pd
2 grading curve  

   
Fig. 8 The area dn

2 under the line P =1 Fig. 9 The area Td
2 under the Pd

2 grading curve 

 

Using the square of the standard deviation σ2 can be calculated the standard deviation σ, 

the relative square of the standard deviation σ2/mlin
2 and the relative standard deviation σ/mlin 

that is the coefficient of variation. 

 

5. LOGARITHMIC EXPECTED VALUE AND AVERAGE PARTICLE SIZE 

 

The expected value or in other words the linear fineness modulus of the grading curve is 

interpreted in a coordinate system which has a linearly scaled x axis. If the grading curve is 

interpreted in a coordinate system which has logarithmically scaled x axis then instead of the 

previously discussed expected value we obtain the logarithmic expected value. Since the 

logarithmic expected value is nothing else then the logarithm to the base ten of the average 

particle size (lgdaverage), the average size of the particles can be calculated. So the average of 

the particle size is interpreted in a coordinate system having a logarithmically scaled x axis 

and its value differs from the value of the linear fineness modulus. 

The expected value is expressed by the area above the distribution function by definition. 

The boundaries of the area above the x axis having a starting point of zero is d=0 and dn 

which are the y axis and the maximum size of the aggregate. 
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In case of logarithmically scaled x axis the maximum size of the particles can be found at 

the lgdn position, but the interpretation of the x axis is more complicated because the starting 

point – since lg0=-∞ – must be different from zero. Due to this the role of the y axis is taken 

by a vertical at lg1=0 value on the x axis, which divides the coordinate system into two parts. 

Since the logarithm of the numbers smaller than one are less than zero that is negative, the 

sign of the area left to the lg1=0 point will be negative.  

The grading curve of d1<1 mm smallest particle size depending on the value of the 

maximum size is located in this negative area (if dn<1 mm), or extends there (if dn>1 mm). 

This later possibility is taken the most general situation in practice. 

So in connection of the logarithmic expected value we may not talk about the above the 

curve area, but about the area boundered by the curve. Accordingly the logarithmic expected 

value is equal to the area boundered by the distribution function expressed in a coordinate 

system which has a logarithmically scaled x axis. This area is out of two parts, one is to the 

left from the x = lg1 = 0 vertical, where the area under the curve is considered, while to the 

right of this line the area above the curve must be considered (Fig. 10) which can be 

expressed as follows: 
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In equation (4) the unit of d is mm and the value of lgdaverage is to be considered as unit 

less.  

Expressing the content of equation (4) by areas on Fig. 10, 11 and 12: 

Lgdaverage (=) TFig.10. = TFig.11. - TFig.12.. 

 
Fig. 10 The area lgdaverage boundered by the grading curve Plgd 
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Fig. 11 The area lgdn under line P =1  Fig. 12 The area Tlgd under the grading curve Plgd 

 

The average particle size (daverage) has the value of the logarithmic expected value 

(lgdaverage) which can be calculated after determining the value of equation (4):  

]mm[10lg averaged
averaged =  (5) 

Looking at the emphasized area on Fig. 10 it can be seen that lgdaverage logarithmic 

expected value and the logarithmic average particle size daverage are independent from the 

starting point lgdm of the x axis.  

 

6. THE HUMMEL AREA AND LOGARITHMIC FINENESS MODULUS 

 

The logarithmic fineness modulus can be calculated from the logarithmic expected value. To 

derive it, it is necessary to calculate the Hummel area Flgd, which is — according to the 

classical interpretation — the same as the area above the grading curve which is expressed in 

a coordinate system with a base ten logarithmic scaled x axis, extending until the lgdm starting 

point of the x axis Hummel (1930; 1959.). The procedure can be carried out by taking the 

difference between the areas represented by lgdaverage and lgdm which due to the negative sign 

of lgdm is numerically an addition: 

2lglglg lglg ⋅=−= mddF maveraged  (6) 

The unit of daverage and dm is mm, while the value of Flgd and the logarithmic fineness 

modulus mlg are both unitless numbers. 

The content of expression (6) by the areas signed in Fig. 13, 14 and 15 is:  

Flgd (=) T Fig.13 = T Fig.14 - T Fig.15 
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Fig. 13 The Hummel area Flgd above Plgd grading curve 

  
Fig. 14 The area lgdaverage boundered by the  Fig. 15 The area lgdm under P =1 straight line 

garding curve Plgd 

 

On Fig. 13 it can be well seen that the magnitude of the Hummel area and consequently it’s 

derivatives alike the logarithmic fineness modules greatly depend on the initial value lgdm of 

the x axis, which bounders the Hummel area or the magnitude of the corresponding value of 

the dm≠0 particle size, which is to be agreed upon Popovics (1952; 1953) .  

For the examination of the particle size distribution Abrams (1918) used the American 

Tyler sieves the characteristics of which is that the finest sieve size — that is the starting point 

of the x axis — is 0.147 mm and the further sieves have the size always the double of the 

previous one that is 0.147·2(i-1), where i = 1, 2, 3,…, n. Taking the logarithms of them the 

sieve sizes (lg0,147)+(i-1)·(lg2) on a logarithmically scaled x axis would be equally distanced 

(lg2), a constant value (Fig. 13). 

By using this property of the Tyler scaled x axis the Hummel area (Flgd) can be derived as 

the sum of partial areas which all have a base length of (lg2) and the height can be calculated 

from the y values (1-Pi) Fig. 2 and 13. To derive formula (6) we followed this method: 
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which is the logarithmic modulus of fineness, having no unit. 

From this the usual practice of characterizing the grading of concrete aggregates differs 

certainly which is using also the y values (1-Pi) belonging to lg2 base length — that is the 
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summarized relative retained masses over doubled sieve sizes — taking the height instead of 

the side of the partial area. Then the qualifying value of the aggregate by the Hummel area is: 
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the fineness modulus as the product qualifying value which generally is simply called the 

fineness modulus. It’s value slightly differs from the theoretical value derived from 

expression (7.1) but in the practice it is neglected. The fineness modulus has also no unit.  

Accordingly the value of the logarithmic fineness modulus and the product qualifying 

greatly depend on the starting value of the x axis. In Hungary in concrete technology the 

starting point of the x axis presently in practice and generally if d1≥dm — due to the lack of 

other any other condition — is always chosen as dm=0,063 mm. 

 

7. SPECIFIC SURFACE BY VOLUME AND BY MASS 

 

The specific surface by volume is the total surface area of a unit body volume of the particles, 

that is the quotient of the sum of the exterior area of the individual particles of the particle 

bulk and the sum of the volume of the particles, which mostly also contain pores. The 

analysation of graphic calculation was carried out by Fáy and Kiss (1961).  

The fV specific surface of a particle set can be expressed in case of spherical or cubic — 

that is idealised — shaped particles as six times the (-1) order ν-1 moment of the area under 

the pd distribution function to the y axis: 
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By introducing u=d-1 [mm-1] and substituting the corresponding values into the above 

expression it can be proved that:  
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According to this the specific surface by volume is equal to six times the area under the 

grading curve which is expressed in a coordinate system having a reciprocally scaled x axis, 

that is:  
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The content of equation (8) are the marked areas on Fig. 16, 17 and 18:  

fV (=) 6·{T Fig. 16} = 6·{T Fig. 17 + T Fig. 18} 

 

 
Fig. 16 The area fV/6 under the grading curve P1/d  

  
Fig. 17 The area 1/dn under the line P=1 Fig. 18 The area T1/d under the grading curve P1/d  

 

The specific surface by volume of the particle bulk is very sensitive to the size and quantity 

of the fine particles. As an extreme example in case of the bulks having d1=0 as the smallest 

particle size the calculation of the specific surface by volume is facing problems, because in 

this case if d1=0 then u1=∞ and fV=∞, that is the specific surface by volume would be infinite. 

Due to this reason a condition is usually drawn, which is d1≥0,001 mm and u1≤1000 mm-1. 

Although this condition is arbitrary, the values can be accepted because in the aggregate for 

concrete the finest particles are the clay particles (which have a particle size less than 0.002 

mm), and the quantity of them we limit deliberately.  

In construction practice the area of a unit amount of the bulk is more liked to be expressed 

instead to the volume, by the specific surface by mass and is simply called the specific surface 

Nischer (1996). The reason of it is simply in the measuring techniques. While the specific 

surface by volume is a calculated grading property, the specific surface can be measured. The 

unit of the specific surface is m2/kg, which is the same as 1000 mm2/g.  
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The connection between specific surface f and specific surface by volume is described by 

the expression (9). 

]/kgm[10 23

T

Vff
ρ

⋅=   (9)  

where: 

fV = specific surface by volume   [1/mm] 

ρT = the average body density of the particles of the bulk   [kg/m3] 

The specific surface also depend on the body density of the material. For this reason — 

unlikely the specific surface by volume — cannot be considered as a grading property, since 

the specific surface can only be used directly to compare bulks having the same particle body 

density.  

 

8. CONCLUSIONS 

 

The advantages of the developed grapho-analytical calculation method of the grading 

properties are that their principle have a standard structure, makes it possible to use arbitrarily 

chosen sieve sizes for the sieve tests and to examine arbitrary particle sizes during 

sedimentation tests. It makes it unnecessary to derive the grading function, eliminates the 

necessity of area or the proportional distance measurement and actually does not really 

require the compilation of the grading curve which belongs to the total examination. The 

application of the calculation method is simple, by solving equations of similar form which 

can be computerized. The standardisation of the method in Europe is not expected, in 

Hungary however a standard deals with it which has been accepted and it’s sign is MSZ 

18288-5:1981. Hopefully this standard will remain in force since no other may substitute it. 

 

9. MOST IMPORTANT NOTATIONS 

 

d nominal particle size, independent variable  

daverage average particle size in case of logarithmically calibrated x axis, the lgdaverage is the 

number of the logarithmic expected value  

di ith particle subset size limit  

dm value of the starting point of the lgdm x axis, the corresponding particle size is for the 

calculation of the logarithmic fineness modulus 

f specific surface (by mass) 
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fV specific surface by volume 

F practical qualifying value of the Hummel area  

Flgd the Hummel area 

k order of moment of the area under a function 

lgdaverage the logarithm to the base ten of the average particle size, the logarithmic expected 

value 

lgdm value of the starting point of the logarithmically scaled x axis 

m the practical product qualifying value of the logarithmic fineness modulus 

mlg the logarithmic fineness modulus 

mlin expected value, in other words the linear fineness modulus 

n the number of the examined particle sizes 

pd the density function 

pδ the density function transformed according to δ  

Pd the distribution function, in other words the grading curve  

Pδ the distribution function or grading curve transformed according to δ  

Pi distribution function value belonging to the ith particle subset boundary  

T Fig. z area marked on Fig. z 

Tδ area under the transformed distribution function Pδ  

δ the value of d particle size transformed proportionally with the grading properties  

µ2 the second order central moment of the area under pδ density function to the vertical 

line of the expected value 

µk the kth order central moment of the area under pδ density function to the vertical line 

of the expected value  

ν0 =1 area under the density function pδ  

ν-1 the (-1)th order moment of the area under the density function pδ to the y axis  

ν1 = Ψ0 the first order moment of the area under the density function pδ to the y axis, which is 

equal to the area above the distribution function Pδ  

ν2 the second order moment of the area under the density function pδ to the y axis  

νk the kth order moment of the area under the density function pδ to the y axis  

ρT average particle body density of dry particle bulk 

σ standard deviation  

σ2 square of standard deviation 

σ/mlin coefficient of variation 

σ2/mlin
2 the relative standard deviation square 
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Ψ1 first order moment of the area above the distribution function Pδ to the y axis 

Ψk-1 the (k-1)th order moment of the area above the distribution function Pδ to the y axis 

(if k is positive)  
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